Think Clean Blog

The CO2 Cleaning Story

Posted by Amanda Bunch on Dec 11, 2017 9:24:01 AM

Ever wonder how precision cleaning using CO2 got started? How did a natural gas like CO2 get turned into a high tech cleaning process for the Aerospace, Medical, Optical, Microelectronic and Hard Disk Drive markets? Several important factors have influenced and ignited the need for cleanliness in manufacturing such as concern for the environment, economic competitiveness and technology.



1990's CFC Phase-Out

Alternative Precision Cleaning

According to Mark Skaer in an article entitled The 1990s: The Decade of Refrigerant Chaos - and Change, "The 1990's was termed decade of refrigerant chaos and change. Cooling was a hot and heavy subject debated throughout the entire world this past decade. The original protocol called for a 50% reduction in chlorofluorocarbon (CFC) chemical production by 1998. The refrigerants used in well over 95% of the world’s systems were to be eventually phased out during the decade of the 90s. Engineers, wholesalers, contractors, and mechanics were all affected. So were system manufacturers, chemical producers, and component manufacturers (theNews,"

Similarly, in the 1990s manufacturers of industrial and commercial products were also significantly impacted by the chlorofluorocarbon (CFC) phase-out, and in particular the use of CFCs in precision cleaning processes.  During this time, alternative precision cleaning practices (new and old, wet and dry) were widely investigated. Many manufacturing companies were looking for a cleaning replacement that did not affect ozone depletion, maximized energy efficiency and had recycling practices. 

CO2 was considered an alternative method due to many attractive properties enabling its use as a cleaning agent. New dry cleaning alternatives emerged, including centrifugal liquid carbon dioxide (CO2) degreasing, CO2 snow, CO2 composite spray, laser and plasma. However, due to the maturity, widespread availability, and knowledge of aqueous cleaning equipment and processes at the time, industry predominantly changed to wet (aqueous) cleaning practices.

Aqueous cleaning did resolve the immediate cleaning problem however, with it came a vast amount of costs: equipment maintenance, bath monitoring and maintenance, drying processes, deionized water production, wastewater management, rust and corrosion prevention, larger factory space utilization and increased labor burden. Product designs and assembly procedures suitable for CFC cleaning processes required transformation to overcome aqueous cleaning constraints such as water entrapment, drying and potential corrosion. There was also an increased piece part cleaning and drying operations prior to assembly. Therefore, the quick fix proved to be costly and manufacturers were open to looking at other technologies that cleaned as good or better than aqueous processes at lower production costs.


New Dry Cleaning

Using CO2 to clean

CO2 performed in many ways similar to dry CFC solvent spray processes and could clean applications such as optical assemblies, wire bonded assemblies, sensors and data storage devices. These markets were some of the first commercial applications CO2 technology could clean with success and could present cost savings to compete with wet processes. CO2 composite sprays are unlike other snow guns in that the sprays are relatively lean and warm with much smaller fractions of microscopic CO2 particles uniformly dispersed in a heated propellant gas, which creates better surface preparation. In these instances, wet processes could not be considered due to material compatibility, cleaning efficacy or assembly procedure constraints.

More recently, companies are concerning themselves with sustainability.  They are under pressure to reduce manufacturing wastes, improve productivity, lower production costs, achieve zero discharge of pollutants into the environment, and maximize water conversion.  As such, there is a need for leaner and greener methods of cleaning during manufacturing.

However, conflicts exist between the "green and lean" manufacturing model with wet cleaning practices.  For example, wet practices use a lot of energy and space.  Also, water resource availability has supplanted upper atmospheric ozone depletion concerns and is a major issue in many manufacturing sectors.

Since the 1990s, precision cleaning with CO2 has demonstrated significant cost-of-ownership, environmental, and performance benefits compared to conventional aqueous and solvent-based alternatives.  CO2 Composite Spray™ technology has evolved and emerged as a mature and bullet-proof precision cleaning technique.  This spray technology offered today provides a significant manufacturing waste reduction strategy and an attractive return-on-investment.  Many manufacturing companies are implementing CO2 composite spray cleaning technology within their production operations, attracted by its many attractive features, benefits, and integration possibilities.

CO2 Composite Spray Evolution Timeline

CO2 composite spray technology was invented and patented by David Jackson, President and CEO of CleanLogix LLC, in the early 1990s.  Since that time, we have steadily evolved and improved the technology.  The latest version of the technology, Vector Pro™, provides the highest performance and best economy to date, and is the foundation for countless precision cleaning and hard machining opportunities in the manufacturing industry.  The spray quality and efficiency of our Vector Pro spray technology has journeyed far from the initial Snow Spray technologies of the 90’s.  CO2 composite sprays are highly stable and provide adjustable cleaning capacity.  


Ready for next steps? Try our free CO2 Consultation.


Read More

Topics: Manufacturing Wastes, CO2 Cleaning, CO2 Precision Cleaning, CO2 Immersion, CO2 Composite Spray, CO2 Technology

CO2 Reduces or Eliminates Manufacturing Waste

Posted by Amanda Bunch on Aug 10, 2017 2:23:04 PM

In an era of complex business challenges; intense global competitiveness, burdensome environmental regulation and resource constraints, companies need both lean and green (clean) manufacturing technology to eliminate multifaceted manufacturing wastes in production operations.

All forms of manufacturing waste significantly impact profitability. So why let these preventable wastes steal your company's hard-earned profits?



Conventional Manufacturing

What is Manufacturing Waste?

Manufacturing waste is any resource used in a production process that does not go out as part of the product or is unnecessarily used (or misused) to produce a product. Manufacturing waste is defined differently for every business, however, it has the same underlining message. If the process is non-value adding and costs you money but earns nothing for your business then it is a waste.



 Eight Deadly Wastes of Manufacturing

There are eight major forms of manufacturing waste that impact manufacturing profitability.  Manufacturing wastes include for example lost time, high energy usage, excessive labor, poor product quality, low productivity, too much factory space, scrap, and stock levels.  These wastes steal company profits. To stay competitive, companies must implement programs that reduce or eliminate these wastes.


Overproduction waste is costly to a manufacturing operation because it prohibits the smooth flow of materials and degrades quality and productivity. Motion waste processing time and is a health and safety concern. Defect wastes have a direct impact on the bottom line, resulting in rework or scrap which are a tremendous cost burden to an organization. Transport waste is excessive movement and handling which causes damage and defects and can cause product quality to deteriorate. Environmental waste such as energy or water use, solid or hazardous waste, air pollution, or chemical hazards are typically overlooked when in fact they impact the bottom line and surrounding communities. Inventory waste tends to hide other waste generation activities on the plant floor, which must be identified and resolved in order to improve operating performance (and cash flows). Waiting waste is whenever goods are not moving or being processed and a product lead-time is tied up – time is money. Processing waste is using expensive high-precision equipment or processes where smaller footprint, more flexible, and less precision equipment and processes can combine steps which would be more efficient – the enemy of good enough is better than.


Lean and Green Manufacturing

CO2 Technology is the New Manufacturing Model

“The most dangerous kind of waste is the waste we do not recognize.” – Shigeo Shingo (source: Newcastle Systems Blog)

The manufacturing waste radar chart (shown right) illustrates an exemplary manufacturing waste generation transformation (Old versus New state) using our CO2-based clean manufacturing technology.  Notice that the area bounded by the various waste generation activities becomes smaller with the implementation of clean manufacturing methods and processes.  Smaller waste generation activity represents a cost reduction or profit improvement for the transformed production process, tool, or line.

Our CO2-based clean manufacturing technology provides the following benefits:

  • Simultaneously eliminates or reduces composite forms of manufacturing waste: time, labor, space, transport, defect, inventory, processing, equipment, raw materials, air pollution, water pollution, wastewater, solid waste, and energy waste.
  • Improves quality and reliability requirements imposed by advanced materials, manufacturing methods and processes, and applications.
  • Uses flexible automation, modular and clustered assembly operations (cells) to eliminate repetitive operational task errors and reduce skilled labor wastes.
  • Adaptable to production tools, lines, and processes to improve efficiency and productivity in variable-volume, high-mix, and high-value production operations.
  • Flexible and scalable to changes in production needs over time.
  • Intelligent, autonomous, and capable of communicating key information in real time that enhances manufacturing quality, timeliness, and productivity.
  • Produces a low cost-of-operation and good return-on-investment.

The lean and green clean manufacturing model using CO2 technology combines advanced surface cleaning, surface cooling, and surface modification technologies and robotics technology to provide multi-tasking manufacturing processes for a production line, in a manufacturing tool, or within a reconfigurable cell.

As shown in the exemplary comparison on the right, the clean manufacturing model provides the basis for huge returns in the form of less labor inputs, less space, less energy usage, less time waste, less water usage, among many other waste reductions.



Ready for next steps? Try our free CO2 Consultation.


Read More

Topics: Manufacturing Wastes, CO2 Cleaning, CO2 Technology

CO2 Tech Pioneers

We set the bar

For over the past 30 years, CleanLogix LLC has been the forerunner of CO2 technology exploring all facets and propelling technological evolutions. Our technology portfolio is the only of its kind, offering a breath and depth of CO2 spray, immersion and particle-plasma patents that has in turn created multiple product platforms.


  • Over 30 years experience
  • CO2 eliminates manufacturing wastes
  • CO2 is the solution for your contamination challenges


Subscribe to Think Clean Blog

Recent Posts